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 Summary 
This technical note describes the process of selecting, preparing and matching external 

climate data to Young Lives respondents’ locations to derive ex-post estimates of climate 

conditions at a community level in regions which traditionally have poor climate data 

collection capacity. The note also details how to use these matched data, specifically 

precipitation records, to assess experiences of anomalous conditions relative to historical 

mean conditions for each community. Finally, it briefly details the structure and content of the 

publicly archived dataset, and how this dataset may be used for further research. 
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1. Introduction 
A growing body of research examines how climatic variables such as precipitation, 

temperature and natural disasters (droughts, floods and storms) can influence economic and 

social outcomes. Work has identified links between climate shocks and health (Deschenes 

2014), conflict (Burke, Hsiang and Miguel 2015), agricultural productivity (Auffhammer and 

Schlenker 2014) and economic growth.1 Additionally, the impact of climate change on 

communities and individuals is becoming increasingly important to quantify for social 

researchers (Baylis,  Paulson and Piras 2011), particularly in low- and middle-income 

contexts where vulnerability to climate change is often higher, the ability to adapt is limited 

(Ford, Berrang-Ford, and Paterson 2011; Ravindranath and Sathaye 2002), and the effects 

are heterogenous across dimensions such as wealth or gender. Of particular interest is a 

large body of literature that considers the link between exposure to adverse climate 

conditions during key stages in early life and an individual’s development and human capital 

formation, with lasting impacts observed in outcomes in later life. Many of these studies 

exploit climate anomalies as plausibly exogenous shocks to the early life period.2  

Young Lives is a longitudinal study of 12,000 young people and their families across four low- 

and middle-income countries (Ethiopia, India, Peru and Vietnam) that examines the causes 

and consequences of poverty. There have been five rounds of in-person data collection to 

date, with the most recent data collection occurring between 2015 and 2016. In addition, a 

five-call phone survey was administered in 2020–21 to gather information about the impacts 

of the COVID-19 pandemic on the index children when they were young adults (Favara et al. 

2022). The survey follows two cohorts – a Younger Cohort of approximately 8,000 children 

(2,000 per country) born in 2000–01 and tracked from age 6–18 months, and an Older 

Cohort of approximately 4,000 children (1,000 per country) born in 1994–95, first tracked 

when they were between 7.5 and 8.5 years old. Understanding respondents’ experiences of 

climate conditions within their community, and across their life, is needed to address research 

needs and to enhance the policy impact of research in this area, through providing greater 

utility to the rich demographic data collected by Young Lives.  

This technical note describes the process of selecting, preparing and matching external 

climate data to Young Lives respondents’ locations to derive ex-post estimates of conditions 

at a community level in regions which traditionally have poor climate data collection capacity. 

The note also details how to use these matched data, specifically precipitation records, to 

assess experiences of anomalous conditions relative to historical mean conditions for each 

community. Finally, it briefly details the structure and content of the publicly archived dataset. 

 

 

1  For reviews of these, see Carleton and Hsiang (2016), Castells-Quintana, Lopez-Uribe and McDermott (2018) and Dell, Jones and 

Olken (2014). 

2  For reviews of the broader literature on early life circumstances, see Almond and Currie (2011), Almond, Currie and Duque (2018) 

and Currie and Vogl (2013). 
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2. Identifying climate shocks 
While Young Lives respondents provide self-reports of their exposure to a wide range of 

shocks (including climate shocks), these reports are likely subject to measurement error and 

recall bias (Bound, Brown, and Mathiowetz 2001), being highly dependent on the perception 

of the severity and impact of a shock. Therefore, respondents may systematically misreport 

shock frequency and intensity (Nguyen and Nguyen 2020). It is also difficult to verify and 

accurately determine the exact timing and intensity of self-reported shocks that happened in 

between survey rounds, and therefore recorded every three or four years. Hence, the validity 

of any such analysis is likely to be improved by using external, objective measurements on 

climate conditions, such as terrestrial station data.  

However, suitable weather station data are limited. The ideal would be to have a well-

maintained and reliable station available near all communities across all four Young Lives 

countries. However, weather station density in low- and middle-income countries (LMICs), 

particularly near the equator, is generally uneven and coverage from any one source of data 

is often poor (Dinku et al. 2008). Even where there is a station near a community in our 

sample, that station’s data may be subject to a high number of missing values, often driven by 

poor maintenance and neglect, lack of funding, or damage, particularly in regions which have 

been subject to conflict or poor governance (Donaldson and Storeygard 2016). Lastly, many 

stations may be privately owned and the data considered proprietary (Dell, Jones and Olken 

2014), or they do not have the capability to automatically upload or broadcast measurements 

to an online service or network, and so are likely not included in any publicly available archive 

which relies heavily on stations with auto-updates for near real-time observations.  

There are several potential alternatives to infer the climate conditions at any point in time in 

the community of interest. One option is to use gridded terrestrial datasets, which employ 

algorithms to interpolate ground weather station data from several sources to provide point 

estimates or cell averages at regular latitude-longitude intervals across a region (Auffhammer 

et al. 2013). This is useful as it provides complete coverage for a region. However, if station 

density in a region is low, this can lead to a few data points being interpolated over a large 

area. This may not be concerning if considered at a highly aggregated geographic level, but 

can misrepresent the actual situation if inference is based on small geographic units (Dell, 

Jones and Olken 2014). Additionally, averaging over large areas will smooth out trends in 

climate variables, underestimating more extreme precipitation or temperature events 

compared to the actual values observed (Harris et al. 2020). In contrast to smoothing out both 

extremes, some gridded datasets may display bias in a specific direction (Ensor and Robeson 

2008). Therefore, caution must be exercised in choosing a specific gridded dataset product. 

Another option is to use satellite weather measurements. This provides an advantage over 

ground station data in areas with poor weather station density and can allow for high 

resolution and frequency analysis. However, this is accompanied by two major drawbacks. 

First, geostationary or near-polar weather satellite data only became available relatively 

recently, and early coverage was incomplete, which limits the range of historical data 

available for assessing trends. Second, satellites cannot provide actual measurements of 

weather data like ground stations, but must infer conditions from measurable changes to 

infrared wavelengths in the atmosphere or cloud coverage, which may give a limited picture 

of the ‘ground truth’ conditions (Dell, Jones and Olken 2014). Additionally, while satellite data 
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are less susceptible to missing records as stations come in and out of service, sensors and 

orbits (particularly non-geostationary satellites) are subject to subtle changes over time which 

will require corrections to be made. While satellite products provide an excellent opportunity 

for observing a wide range of phenomenon, from weather to pollution, forest/habitat loss, 

night lights and economic development, the length of record of full coverage for climate data 

is relatively short and may make assessing relative changes to climate conditions in 

communities over time difficult. 3 In comparison, gridded datasets often provide complete time 

series in excess of 100 years, with particular care taken to digitise print and handwritten 

station readings. Given the potential issues outlined above, gridded products based on 

several rich data sources may provide a more accurate picture of the ground truth in some of 

our regions of interest. Therefore, it was decided to match a gridded terrestrial dataset.  

3. University of Delaware global 
gridded monthly climate time 
series 
The dataset selected for this data matching process is the Terrestrial Air Temperature and 

Precipitation Gridded Monthly Time Series (v5.01)4 (Matsuura and Willmott 2018) from the 

University of Delaware (hereafter ‘UDel’). This dataset provides global land-based estimates 

of monthly total precipitation and average air temperature at regular 0.5°x0.5° intervals 

(roughly 50x50km at the equator) on a grid for the period 1901–2017. Data are compiled from 

several ground station dataset sources: the Global Historical Climatology Network (GHCN2 

(precipitation) and GHCN3 (temperature), monthly versions derived from the GHCN-Daily 

dataset (Menne et al. 2012)); daily records from the National Centers for Environmental 

Information (NCEI) Global Surface Summary of the Day (GSOD); Sharon Nicholson’s African 

station archive (Nicholson 1979, and subsequent updates); Webber and Willmott’s South 

American station archive (1998); daily station records from India, derived from the National 

Center for Atmospheric Research (NCAR); Greenland station records from GC-Net (Steffen, 

Box and Abdalat 1996); and a few other sources.5 Filters are applied to temperature and 

precipitation records to remove unrealistic and likely erroneous records. Monthly total 

precipitation and average air temperature fields are estimated using climatologically-aided 

interpolation (Willmott and Robeson 1995), which by using a background climatology can 

potentially improve the accuracy of spatial interpolated station data. Values are then 

interpolated into a regular grid based on a spherical version of Shepard’s inverse distance-

 

 

3  For a review of the applications of satellite products in social and economic research, see Donaldson and Storeygard (2016). 

4  University of Delaware Terrestrial Precipitation data provided by the NOAA PSL, Boulder, Colorado, USA, from their website 

at https://psl.noaa.gov/data/gridded/data.UDel_AirT_Precip.html: OR 

https://web.archive.org/web/20230331042450/http://climate.geog.udel.edu/~climate/html_pages/download.html [Wayback Machine 

Archive]  

5  See the README files for further details: 

https://web.archive.org/web/20210414125704/http://climate.geog.udel.edu/~climate/html_pages/Tropics_files/README.tropic_preci

p_ts.html [Wayback Machine Archive]  

https://web.archive.org/web/20230331042450/http:/climate.geog.udel.edu/~climate/html_pages/download.html
https://web.archive.org/web/20210414125704/http:/climate.geog.udel.edu/~climate/html_pages/Tropics_files/README.tropic_precip_ts.html
https://web.archive.org/web/20210414125704/http:/climate.geog.udel.edu/~climate/html_pages/Tropics_files/README.tropic_precip_ts.html
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weighting algorithm (Shepard 1968; Willmott et al. 1985) to produce a balanced latitude-

longitude grid of point estimates. The number of nearby stations which may influence a grid 

point is 20, increasing from 7 in early versions and improving the accuracy of grid estimates 

(Matsuura and Willmott 2018). Interpolation of temperature estimates is assisted by a digital 

elevation model which adjusts for the effect of the differing elevations of stations on 

temperature measures.  

As mentioned previously, the accuracy of point estimates heavily depends on the spatial 

density of weather stations in a region. This is particularly true of precipitation, which can 

exhibit high spatial variation (Dell, Jones and Olken 2014). However, in the regions 

considered there are few alternatives. The UDel dataset performs relatively well alongside 

other gridded products in comparison to ground station data (Ahmed et al. 2019; Akinsanola 

et al. 2017; Harris et al. 2020; Nashwan and Shahid 2019), although comparison across the 

regions of interest is limited. One such comparison in Vietnam with the region-specific 

Vietnam Gridded Precipitation (VnGP) dataset did indicate that UDel underestimated 

precipitation patterns in north and south-central Vietnam, and performed relatively poorly in 

estimating high rainfall during the south-west monsoon period (Vu et al. 2018). Another 

limitation of the UDel dataset is that it only provides two climatic variables, monthly total 

precipitation and average air temperature, whereas other options such as the University of 

East Anglia Climatic Research Unit Time Series (UEA CRU TS) (New, Hulme and Jones 2000) 

can offer other derived variables such as number of wet days and cloud cover, although these 

are generally derived from the same base variables.  

4. Young Lives community GPS data 
Young Lives uses a multi-stage sentinel site sampling approach in which 20 sentinel sites in 

each study country were purposively selected, with households within each sentinel site with 

children of the correct age chosen randomly to provide around 100 Younger Cohort and 50 

Older Cohort children. Sentinel sites were chosen to meet the study aims; therefore, poor 

areas were oversampled.6 Generally, Young Lives country samples were not intended to be 

nationally representative. Nevertheless, analysis of sampling procedures shows that despite 

biases, Young Lives samples cover a diverse distribution of children in each country, providing 

an appropriate instrument for analysing causal relations and modelling the longitudinal 

dynamics of child welfare (Escobal and Flores 2008; Outes-León and Sánchez 2008). 

Within each sentinel site (or ‘cluster’) communities are defined according to administrative 

areas. In practice, the boundary of a Young Lives community may be smaller, larger, or the 

same size as the sentinel sites and might include a whole village or a suburb in a city. 

Wherever possible, researchers trace the new location of children who have moved between 

rounds and visit them at their new address, and as such new communities may be defined in 

subsequent rounds. Starting from Round 2 in India and Peru, Round 3 in Ethiopia, and 

Round 4 in Vietnam, GPS coordinates were collected by enumerators for communities with 

 

 

6  For an overview of sampling practices, see Young Lives (2017a). Each country team used slightly different methods to deliver this 

semi-purposive sampling strategy. For further details, see the individual country sampling and design reports (Young Lives 2017b, 

2018a, 2018b, 2018c). 
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three or more respondents. These are not publicly archived to protect the anonymity and 

confidentiality of the Young Lives respondents. The community latitude and longitude 

coordinates are defined as a central location or landmark, usually a main square or park, 

market, church, town hall or school, using handheld GPS devices. To simplify cleaning and 

reduce potential inconsistencies across rounds, one set of coordinates was selected for each 

community and applied across all rounds. 

As these coordinates were provided from enumerators as simple text strings, there was 

significant heterogeneity in format, length and precision of coordinate, and additional 

characters, as well as mistakes likely arising during digital data entry. Extensive data cleaning 

and validation was therefore required. Using Stata 16, raw text strings were first cleaned of 

any non-numeric characters, and the length of numeric strings was standardised (those 

coordinates which were evidently incomplete or erroneous were separately queried with 

country data managers). Strings were then split into parts, converted to numeric and 

transformed to decimal degree (DD) format. Where formats were in degree-minute-second 

(DMS) format, this was achieved by dividing minutes by 60 and seconds by 3,600. Where 

coordinates were in other formats, such as degree-decimal minute, they were 

converted accordingly.  

To validate the location of communities, further information on location was matched, 

including administrative region names (in English) for levels 1–3, and community name. 

Shapefiles for administrative region boundaries were obtained from the Database of Global 

Administrative Areas (GADM) and imported as separate layers to QGIS 3.20. Community 

GPS coordinates were imported as a points layer, and a spatial join was conducted to match 

points to the lowest level of administrative region for which information was available. The 

administrative region name as listed by Young Lives was then compared with the spatially 

matched region name using regular expression matching.7 Discrepancies were identified and 

also queried with country data teams. Where coordinates could not be corrected, new 

coordinates were defined using a central landmark of the community, with the agreement of 

each country data manager. 

A final sample of cleaned GPS coordinates was obtained for 314 communities in total across 

the four countries. This is an incomplete list of all community locations for several reasons. 

First, as GPS was only collected in Round 2 or later, some communities in Round 1 may have 

ceased to exist if all respondents moved. Additionally, in some cases, communities defined in 

Round 1 may have been split or merged prior to GPS data collection and so the community 

code ceased to exist. Second, respondents who moved from a Young Lives community, but 

not to another Young Lives community may have been designated as living in a Young Lives 

mini-community, depending on the number of other respondents also now living in that 

community, or otherwise may be missing a community code. While mini-communities were 

first designated from Round 2, GPS coordinates were not collected until Round 4. For 

confidentiality reasons, mini-communities were not included in this data matching exercise. 

Table 1 provides a summary of the coverage by country. 

 

 

7  Additionally, informal validation of community points was conducted by checking community names against an OpenStreetMap 

layer; however, this was incomplete as many communities were not named at village or town level, but instead at neighbourhood 

level. 
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Table 1. Communities for which GPS coordinates were obtained 

 Main GPS Percentage 

Ethiopia 28 26 92.9 

India 101 96 95.0 

Peru 172 158 91.9 

Vietnam 36 34 94.4 

Total 337 314 93.2 

 

5. Estimating community rainfall and 
temperature conditions 
To approximate rainfall and temperature experienced by the Young Lives respondents in the 

community where they were living, an inverse distance-weighted (IDW) interpolation 

algorithm is used. Generally, a community lies between any four grid points. Therefore, using 

GPS coordinates collected at the community level, the distance between the community 

centre (defined as a point of interest as discussed above) and the four nearest grid points is 

measured. For each point, 𝑝, a weighting, 𝑤, is calculated:8  

𝑤𝑝 =
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑝

−1

∑ 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑝
−14

𝑝=1

 

Where 𝑤𝑝 ∈ (0,1], such that the closest grid points have a greater influence on the 

community estimate, which is the weighted average of those four points. This provides an 

estimate of total rainfall at each community, 𝑐, for each month, 𝑚, of each year, 𝑦: 

𝑃𝑟𝑐𝑝𝑐𝑚𝑦 = 𝑤1𝑃𝑟𝑐𝑝𝑝1 + 𝑤2𝑃𝑟𝑐𝑝𝑝2 + 𝑤3𝑃𝑟𝑐𝑝𝑝3 + 𝑤4𝑃𝑟𝑐𝑝𝑝4 

And similarly for average temperature. Using this method, an unbroken monthly record of 

these climatic variables is derived for the community across the period 1901–2017. 

In the following two subsections, we discuss the accuracy of the data estimates (Section 5.1.) 

and derive a relative measure of community rainfall to define weather anomalies 

(Section 5.2). 

5.1 Comparison of estimates with station data 

While deriving community estimates from a gridded product provides an uninterrupted time 

series with global coverage across the regions and time period of interest, there is some 

concern over accuracy – whether community estimated values reflect relatively well the 

actual underlying conditions in that community. Estimates are interpolated from grid points 

which are in turn interpolated from several underlying data sources. Where station density 

and temporal coverage is poor, grid points could be interpolated from stations far from the 

area of interest, which may provide an inaccurate picture. To briefly assess the accuracy of 

 

 

8  This was achieved in Stata using the -geonear- user-written command (Picard 2010). 
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community estimates, raw station data for precipitation were obtained from the Monthly 

Global Historical Climatology Network (GHCN-Monthly) version 2 (Peterson and Vose 1997). 

All stations with records of precipitation across the period between January 1994 and 

December 2003 were obtained for each region,9 yielding 137 stations. As noted, temporal 

and spatial coverage of station data for our regions of interest in publicly accessible online 

archives is mixed, therefore a relatively short record of 10 years, covering the period in which 

most of the Young Lives sample were born, was selected for comparison. Additionally, the 

proportion of stations with many missing values was high. To maintain a subsample of 

relatively reliable stations, all stations with more than 50 per cent of monthly records missing 

were discarded, leaving 67 stations. The distance from each Young Lives community to the 

nearest station was then measured. To provide a comparable measure to the estimates 

interpolated from grid points, the sample was restricted to communities with stations within 

50km (the furthest possible distance a community could be located from a single grid point in 

the UDel dataset), yielding a subsample of 24 communities: 14, 3 and 7 from Ethiopia, India 

and Peru respectively, and none for Vietnam (see below), with values proxied by records from 

six stations. Stations ranged from <1km to 50km away, with 50 per cent of communities lying 

within 12km of a station.  

This exercise produces relatively few stations for which to proxy a small sub-sample of 

communities, with no stations found within 50km of a community in Vietnam. Therefore, 

additional precipitation station data are obtained for each of the four countries from the NCEI 

Global Summary of the Month (GSOM) dataset, ordered separately for each country using 

the NCEI’s online data search.10 This archive contains monthly summaries for a wide range of 

climatic variables, computed from stations included in the GHCN-Daily dataset (while this 

dataset is similar, it is a separate product to the GHCN-Monthly dataset with some differences, 

in particular records in the GHCN-Monthly dataset have been bias corrected). These data are 

subjected to the same restriction criteria as the above stations, with duplicates found in both 

datasets removed.  

A final sample was obtained of 51 communities from all four countries (14, 9, 20 and 8 from 

Ethiopia, India, Peru and Vietnam, respectively) with precipitation values provided from 12 

stations. UDel precipitation estimates for these communities were matched, with the average 

monthly precipitation across communities calculated for both time series using communities 

for which a station record was available in that month. Figure 1 gives the mean deviation in 

estimates and station values across all communities for each month. The absolute difference 

in mean estimates across the series is small across the whole period, with the mean 

difference between a community estimate and the nearby station record of 3.07mm.  

Figure 2 shows the kernel density plot of the difference in all community estimates from 

nearby station records. The distribution is highly focused around a zero difference, with a high 

level of kurtosis and a negative skew due to a small number of extreme negative differences 

in the far end of the tail (min/max. difference=-563.34/166.93, percentiles: 1st=-138.65, 

99th=100.33). While it cannot be confirmed if all station records are fully accurate, the 10 

 

 

9  In some cases, the nearest station may be located across country borders. To allow for this, stations were first filtered within a box 

defined by latitude and longitude values rather than country borders. The bounds are as follows: Ethiopia: 16°N, 32°E and 2°N, 49°E; 

Peru: 1°N, 82°W and 19°S, 68°W; India (Andhra Pradesh and Telangana): 21°N, 76°E and 11°N, 86°E; Vietnam: 25°N, 101°E and 

7°N, 110°E. 

10  The NCEI data search can be found at: https://www.ncei.noaa.gov/access/search/dataset-search.  

https://www.ncei.noaa.gov/access/search/dataset-search
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largest underestimates (ranging -289.65 to -563.34) come from two stations: one located in 

northern Peru between December 1997 and March 1998, and another located in south-

central Vietnam in November 1998. These periods coincide with extreme rainfall during the 

1997–98 El Nino and 1998–2001 La Nina (and at the high point of local rainy season) events 

respectively, during which these two regions experienced extremely high rainfall over a very 

short period (Gobin et al. 2016; Ramírez and Briones 2017). While the differences are high, 

this reflects the extreme, sudden, short spikes in station values rather than extremely low 

estimates of community rainfall, and it cannot be ruled out that very high individual station 

values are simply erroneous or due to a measurement error.  

Figure 1. Trends in mean precipitation, UDel versus GHCN/GSOM, non-missing station 

records 

 

Note: Mean rainfall across 51 communities, proxied by 12 stations from both GHCN-Monthly and GSOM datasets. 

A limitation of this comparison is that both GHCN-Monthly and GSOM datasets are derived 

from the GHCN-Daily dataset, which is one of the station data sources for UDel. Therefore, it 

could be expected to see little difference in station values and estimates. However, as UDel 

includes other regional sources of station data, and grid estimates are influenced by a 

combination of nearby station values, it is unlikely to be identical. Overall, this comparison still 

shows that estimates derived as a weighted average of grid points, which were interpolated 

from underlying station data, do not on average differ significantly from real ground station 

data, therefore providing an at least equally good measure of ground conditions as the limited 

station data, while providing the advantage of an unbroken time series without missing values. 

Lastly, this comparison does not allow for the performance of the UDel dataset, and the 

subsequently derived community estimates, to be evaluated against the ‘ground truth’ 

conditions in areas where there are no stations. This reflects the common issue of analysis 
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using observational data, that the counterfactual cannot be observed. Overall, these 

comparisons suggest that, for this subsample of communities at least, interpolated 

community estimates track well with nearby station data for most records – although some 

smoothing can be observed for short, sudden periods of extremely high precipitation, leading 

to underestimation of extreme rainfall events – suggesting that estimates provide a suitable 

measure in the relative absence of alternatives. 

Figure 2. Distribution of estimate differences, UDel vs GHCN/GSOM 

 

Note: Kernel = epanechnikov, bandwidth = 2.822. 

5.2 Deriving a relative measure of community rainfall 

Community rainfall is derived as an estimate of the absolute total rainfall for each month of 

each year, in each community. However, while absolute values may be suitable for assessing 

trends over time for a single community, absolute rainfall does not capture the relative 

dryness or wetness (that is, potential experience of drought or abnormally high rainfall), as 

what may represent abnormally low/high rainfall for one community could be perfectly 

acceptable for a community in a different region. As such, absolute values may not be 

accurate for representing anomalous weather across spatially different locations (Hayes et al. 

2011), particularly across such diverse areas as the Young Lives study regions, and it would 

be optimal to derive a measure of conditions relative to each location. Additionally, to account 

for seasonality in precipitation across any given year, a relative measure should be specific to 

the month of the year. There are several potential relative measures of rainfall used in 

climatology literature and there is no consensus on a specific framework (Mishra and Singh 

2010). Therefore, it was considered beyond the scope of this exercise to provide a specific 

relative measure, to allow as much flexibility for future users.  
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This section discusses one measure which may be derived by users, the Standardised 

Precipitation Index (SPI) (McKee, Doesken and Kleist 1993), which provides a simple 

measure of conditions relative to a long-term mean. An advantage of this measure is that it 

requires only precipitation to calculate and is computationally simplistic, unlike other 

measures such as the Palmer Drought Index (LLoyd-Hughes and Saunders 2002). The SPI 

derives a value for a month’s rainfall in terms of standard deviations from the long-term mean 

of the transformed standardised normal distribution for that specific month of the year and 

community. This is preferred as, unlike a deviation from the simple long-term average, the 

non-negative and positively skewed nature of rainfall is accounted for prior to normalisation. 

The SPI is computed by fitting a suitable probability density function to the frequency 

distribution of precipitation summed over a time period of interest, with the probability density 

function then transformed into the standardised normal distribution. This is conducted for 

each month or period of the year at each location separately, providing a period-community 

specific measure of rainfall anomalies relative to long-run conditions. 

As an example, we will derive a month-community specific one-month SPI, 𝑍, by fitting a 

precipitation record over a period of 𝑛 years to a mixed-distribution function, following a 

gamma distribution for non-zero precipitation. This variable will not be included in the publicly 

available dataset given the range of factors and modelling choices which may influence the 

accuracy of results for any one region (discussed below); however, example code for 

implementation of this worked example using Stata is provided in the Appendix.11 Following 

Lloyd-Hughes and Saunders (2002), we can model a time series of non-zero precipitation 

using a gamma distribution with probability density function: 

𝑔(𝑥) =
1

𝛽𝛼Γ(𝛼)
𝑥𝛼−1𝑒

−
𝑥
𝛽 

For 𝑥 > 0 as non-zero precipitation, with shape parameter 𝛼 > 0, scale parameter 𝛽 > 0, and 

gamma function Γ(𝛼). In the example code snippet in the Appendix, the Stata user-written 

command -gammafit- (Cox and Jenkins 2003) is used to derive estimates of the parameters, 

𝛼̂ and 𝛽̂, using maximum likelihood. For instances which do not converge, 𝛼̂ and 𝛽̂  can be 

approximated following Thom (1958): 

𝛼̂ =
1

4𝐴
(1 + √1 +

4𝐴

3
) 

𝛽̂ =
𝑥̅

𝛼̂
 

Where, for 𝑛 observations: 

𝐴 = ln(𝑥̅) −
∑ ln⁡(𝑥)

𝑛
 

Data can then be fit to the gamma distribution 𝑔(𝑥) using the -gammaden- command. To 

account for zero precipitation values, a mixed distribution is defined, given by: 

𝐻(𝑥) = 𝑞 + (1 − 𝑞)𝐺(𝑥) 

 

 

11 The SPI can be derived easily for a range of fitting distributions using the SPEI package in R (Vicente-Serrano, Beguería and López-

Moreno 2010). 
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With 𝑞 = 𝑃(𝑥 = 0) > 0 being the probability of zero rainfall and where integrating 𝑔(𝑥) with 

respect to 𝑥 gives the incomplete cumulative probability function, 𝐺(𝑥): 

𝐺(𝑥) = ∫ 𝑔(𝑥)⁡𝑑𝑥
𝑥

0

=
1

𝛽̂𝛼̂Γ(𝑎̂)
∫ 𝑥𝛼̂𝑒

−
𝑥

𝛽̂𝑑𝑥
𝑥

0

 

Which is calculated in the worked example using the -gammap- command. An SPI, 𝑍, can be 

computed by transforming the mixed distribution, 𝐻(𝑥), to the standard normal distribution. A 

practical method for computing SPIs for a large number of points is given by Edwards and 

McKee (1997) using the approximate conversions listed in Abramowitz and Stegun (1964):12 

𝑍 =

{
 
 

 
 −(𝑡 −

𝑐0 + 𝑐1𝑡 + 𝑐2𝑡
2

1 + 𝑑1𝑡 + 𝑑2𝑡
2 + 𝑑3𝑡

3
) ⁡⁡⁡𝑓𝑜𝑟⁡⁡⁡⁡0 < 𝐻(𝑥) ≤ 0.5

+(𝑡 −
𝑐0 + 𝑐1𝑡 + 𝑐2𝑡

2

1 + 𝑑1𝑡 + 𝑑2𝑡
2 + 𝑑3𝑡

3
) ⁡⁡⁡𝑓𝑜𝑟⁡⁡⁡⁡0.5 < 𝐻(𝑥) < 1

 

Where: 

𝑡

{
 
 

 
 

√𝑙𝑛 [
1

(𝐻(𝑥))2
] ⁡⁡⁡⁡𝑓𝑜𝑟⁡⁡⁡⁡⁡0 < 𝐻(𝑥) ≤ 0.5

√𝑙𝑛 [
1

(1 − 𝐻(𝑥))2
] ⁡⁡⁡⁡𝑓𝑜𝑟⁡⁡⁡⁡⁡0.5 < 𝐻(𝑥) < 1

 

And: 

𝑐0 = 2.515517, 𝑐1 = 0.802853, 𝑐2 = 0.010328, 𝑑1 = 1.432788, 𝑑2 = 0.189269𝑑3 =

0.001308 

This is conducted for each month of the year at each location to produce a specific index for 

that community-month grouping. In the Stata example, this is achieved by specifying the 

above process as a programme and running over each grouping with the -runby- command 

(Picard and Schechter 2017). The derived SPI allows precipitation for each month to be 

expressed in terms of the number of standard deviations from the long-run mean rainfall of 

the standardised distribution. As such, simple indicators of relative dryness or wetness can be 

defined – following McKee, Doesken and Kleist (1993) and LLoyd-Hughes and Saunders 

(2002) – as shown in Table 2. 

Table 2. SPI categories 

SPI value Category Probability (%) 

2.00 or more Extremely wet 2.3 

1.50 to 1.99 Severely wet 4.4 

1.00 to 1.49 Moderately wet 9.2 

0.99 to 0 Mildly wet 34.1 

0 to -0.99 Mild drought 34.1 

-1.00 to -1.49 Moderate drought 9.2 

-1.50 to -1.99 Severe drought 4.4 

-2.00 or less Extreme drought 2.3 

 

 

12 See Lloyd-Hughes and Saunders (2002) for more details. 
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However, several factors or modelling choices can have a strong impact on the derived results 

of a calculated SPI. It must be assumed that the theoretical probability function chosen is 

appropriate for modelling monthly precipitation for the locations of interest. The above example 

employs a two-parameter gamma distribution as recommended by McKee, Doesken and Kleist 

(1993); other potential distributions include log-normal, Pearson type III, and exponential 

distributions (Mishra and Singh 2010). Relatedly, the goodness-of-fit  of the data is directly 

related to the length of record used (number of month-specific observations, i.e. the number of 

years). Investigating the impact of different precipitation records for SPI calculation using 

gamma distributions, Wu et al. (2005) find significant differences stemming from differences in 

the estimated shape and scale parameters, affecting the shape of the gamma distribution to be 

fitted. McKee, Doesken and Kleist (1993) recommend using at least 30 years of high-quality 

observations, with an additional concern being that low-quality observations will lead to a 

different distribution being fitted than the true underlying theoretical distribution. Additionally, 

while the above example calculates one-month SPIs, when considering longer timescales, 

particularly in excess of six months, central limit theorem suggests that the observed probability 

distribution will shift towards normal; therefore, it may be more computationally efficient to 

model longer timescale SPIs as approximately normal (LLoyd-Hughes and Saunders 2002). 

Lastly, for relatively dry climates for which precipitation is strongly seasonal and zero values are 

common, short time frame SPIs may not be normally distributed due to a highly skewed 

underlying frequency distribution and the limitation of the fitted gamma distribution, potentially 

leading to large errors when using short precipitation records (Mishra and Singh 2010). Given 

these considerations, a predefined SPI is not provided in the dataset. 

6. Matched dataset  
Table 3 provides the variable name and description for all variables included in the publicly 

available dataset for each country. Climate variables are offered at the community level, with a 

panel data structure, such that the group variable is the anonymised unique community 

identifier (COMMID)13 which can be used to match climate variables to Young Lives 

respondent data. The time component of the panel data is described uniquely by two 

variables, YEAR and MONTH. Hence, each community has a unique value of precipitation 

PRCP and temperature TEMP, for each year and month pairing. This allows the timing of a 

specific month’s climate conditions to be identified exactly, both absolutely and relative to 

certain events (e.g. for the year prior to the date of interview in any round). 

Table 3. Data dictionary 

Variable Description  

COMMID Unique anonymised Young Lives community identifier 

PRCP Monthly total precipitation estimated for the community centre point 

TEMP Monthly average air temperature estimated for the community centre point 

YEAR Year of record 

MONTH Month of record 

 

 

13 COMMID and PLACEID are the same variable and indicate the Young Lives community identifier. 
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7. Conclusion 
This technical note details the process of selecting, preparing and matching external data for 

climate variables to the Young Lives respondent community locations, specifically monthly 

total precipitation and average air temperature, using the global gridded terrestrial time series 

dataset (UDel) (Matsuura and Willmott 2018). Community estimates were estimated as an 

inverse distance-weighted (IDW) average of the nearest four grid point estimates. 

Comparison of a subsample of community estimates with nearby station data, although 

limited, suggests that estimates derived from this interpolation, or the use of an interpolated 

gridded dataset, do not systematically differ from records observed by nearby ground 

stations, when available. This data matching widens the utility of an already rich demographic 

dataset, allowing the impacts of climate on children and young adults across key stages of 

development to be quantified.  
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Appendix: SPI example Stata code 
snippet 
First install the required packages: 

 
    ssc install runby, replace 
    ssc install gammafit, replace 

Then specify the following program (assuming the precipitation variable in your dataset is named 

PRCP): 

 
    clear all 
    program define SPI 
     
        //Step 1a: estimate parameters alpha and beta for monthly PRCP>0 
        ***************************************************************** 
        capture noisily gammafit PRCP if PRCP>0, iter(2000) 
        //capture required as some will not converge, causing an an error and 
        //leading to them being discarded by the runby command otherwise. 
        local alpha_hat = e(alpha) 
        local beta_hat = e(beta)         
        sort PRCP  
        //sort required for -gammaden- and -gammap- commands below 
         
        //Step 1b: for non-convergence, approx. alpha & beta by Thom (1958) 
        ******************************************************************* 
        if `alpha_hat' == . { 
            egen total = total(ln(PRCP)) if PRCP>0 //elicit sum of ln(x)  
            quietly summarize total 
            local total = r(max) 
            //find parameter A 
            quietly summarize PRCP if PRCP>0 
            local A = ln(r(mean))-(`total'/r(N)) 
            //thom equations to approximate alpha_hat and beta_hat 
            local alpha_hat = (1/(4*`A'))*(1+(1+4*`A'/3)^(1/2)) 
            local beta_hat = r(mean)/`alpha_hat' 
            }     
         
        //Step 2: Using these parameters, fit gamma density function to data 
        ******************************************************************** 
        generate gammaden = gammaden(`alpha_hat',`beta_hat',0,PRCP) if PRCP>0 
 
        //Step 3: Compute for cummulative density G(x) (excluding zeros) 
        **************************************************************** 
        generate gx = gammap(`alpha_hat', PRCP/`beta_hat') 
 
        //Step 4: account for zeros and adjust cummulative density 
        ********************************************************** 
        //want H(x) = q+(1-q)G(x), where q = P(x=0)>0 => n/N: 
        //number of total observations 
        quietly summarize PRCP 
        local N = r(N) 
        //number of zero observations 
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        count if PRCP == 0 
        local n = r(N) 
        //set H(x) to q = n/N if x = 0 
        generate hx = `n'/`N' if PRCP == 0 
        //otherwise we have H(x)=q+(1-q)G(x) 
        replace hx = `n'/`N'+(1-(`n'/`N'))*gx if PRCP>0 
             
        //Step 5: Compute SPI using approximation: 
        ****************************************** 
        generate t = (ln(1/(hx^2)))^(1/2) if hx>0 & hx<=0.5  
        replace t = (ln(1/((1-hx)^2)))^(1/2) if hx>0.5 & hx<1 
        //generate SPI based on values given by Abramowitz and Stegun (1964) 
        local c0 = 2.515517 
        local c1 = 0.802853 
        local c2 = 0.010328 
        local d1 = 1.432788 
        local d2 = 0.189269 
        local d3 = 0.001308 
        local exprs (`c0'+`c1'*t+`c2'*t^2)/(1+`d1'*t+`d2'*t^2+`d3'*t^3) 
        generate SPI = -(t-`exprs') if hx>0 & hx<=0.5 
        replace SPI = t-`exprs' if hx>0.5 & hx<1 
         
    end 

This will produce an approximately standard normal index which measures the deviation of 

precipitation relative to long-term mean of precipitation for that specific MONTH in that specific 

location (COMMID). Opening the rainfall dataset (replace ”DATA.dta” as required), with panel data 

structure 𝑁 × 𝑇, where 𝑁 is COMMID and 𝑇 is described by YEAR and MONTH, we can specify the 

period over which we wish to define our long-term distribution of rainfall by setting the values of locals 

`end' and `start' based on the YEAR variable: 

 
    use "DATA.dta", clear 
 
    local end= XXXX 
    local start= XXXX 
 
    //set period to fit distribution over 
    keep if inrange(YEAR,`start',`end')  

The above SPI program can then be passed to the runby command, which iterates over the record for 

each month of the year in each community based on the length of record chosen. 

 
    //loop for each commid-month grouping 
    runby SPI, by(COMMID MONTH) status  
     
    // drop intermediate variables 
    capture drop gammaden gx hx t total  

Once finished, we will have created a new variable SPI which provides values for every month-year 

period at each community; however, this is only for observations within the start and end years chosen 

above. 
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